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Abstract-This paper presents an approximate analysis of the binary boundary-layer equations under 
conditions in which the external flow field pressure gradient is not zero, and the flow Mach number 
is not necessarily small. Expressions for the skin friction and heat-transfer coefficients are derived 
together with formulae exhibiting the explicit effects of injection. The results are compared with exact 

numerical solutions for a wide range of flow conditions, and the agreement is very close. 

NOMENCLATURE 

skin-friction parameter defined by 
equation (41); 
constant defined by equation (25); 
constant defined by equation (30); 
mass-transfer parameter defined by 
equation (50) ; 
mass-transfer parameter defined by 
equation (41); 

5, density viscosity parameter; 

Chapman-Rubesin parameter; 
skin-friction coefficient ; 
Stanton number; 
Stanton number based on conduction 
heat transfer ; 
specific heat at constant pressure for 
mixture ; 
specific heat of frozen mixture at 
constant pressure; 
specific heat at constant pressure for i 
component ; 
coefficient of diffusion; 
modified stream function; 
surface mass-transfer parameter; 

E UW, modified surface mass- 

transfer parameter ; 

t This work was suonsored bv the Office of Aero- 
space Research, Aerospace Research Laboratories, 
under Contract AF 33(616) 8453. 

J-3 function defined by equation (73) ; 
F(T), function defined by equation (35); 

g = g, total enthalpy ratio; 

G, fiction defined by equation (92) ; 
k specific enthalpy of mixture; 
ht, specific enthalpy of i component; 
K total enthalpy of mixture; 
KG mass fraction of i component; 
k, thermal conductivity; 

L =CPFP~ 
-, Lewis number; 

k 

Me, free stream Mach number; 
da, molecular weight of i component; 

2, mean molecular weight of mixture; 
P> static pressure; 

p 2!qE, Prandtl number; 

4, local heat-transfer rate; 
4W surface heat-transfer rate; 

& = z, Reynolds number based on free 

stream quantities; 
R UY universal gas constant; 
R mean gas constant of mixture; 

S =L 
p&2 ’ 

Schmidt number ; 

T, temperature; 
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u, c’, velocity components in x and y 
directions ; 

vii, diffusion velocity vector of i compo- 
nent ; 

x, y, boundary-layer coordinates. 

Greek symbols 
a, mass-transfer parameter defined by 

equation (53); 

5: 
pressure gradient parameter; 
pressure gradient parameter for 
M, = 0; 

Y, ratio of specific heats of free stream gas; 

AZ&2 

6 = --~--7 
dlC,1 

defined by equation (22) ; 

F:, defined by equation (34); 
*9 stream function ; 
% 5, transformed coordinates ; 
‘TW, wall shear stress; 
cc? coefficient of viscosity. 

Subscripts 
refers to foreign gas injected at surface; 
refers to air in free stream ; 
evaluated in the free stream; 
evaluated at the wall ; 
evaluated under conditions in which 
the wall mass transfer is zero, but the 
wall temperature is maintained 
constant; 
evaluated under adiabatic wall con- 
ditions. 

INTRODUCTION 

THE PROBLEM of mass-transfer cooling of 
vehicles moving at high velocities has been 
considered by several authors. The general 
approach, however, has been to solve the 
complex differential equations by numerical 
integration on a digital computer. This method, 
while it provides solutions of very high accuracy, 
only provides solutions in numerical form. 
This drawback is very great, particularly from 
the designer’s point of view, since in any specific 
problem the complete integration must be 
carried out. For most practical configurations 
the procedure becomes exceedingly complex, 
and for problems involving the prediction of 
surface temperature variations during a reentry 
phase, this is particularly true. 

It was on consideration of these difficulties 
that a paper was published by Li [I] in which 
a method of approximate solution of the binary 
boundary-layer equations was presented. Li’s 
paper, however, dealt only with the case of the 
flow over a flat plate. The purpose of the present 
paper is to extend the approach so that it may 
be applied to the general case with a non-zero 
pressure gradient. The specific objective is to 
provide formulas for the evaluation of the skin- 
friction and heat-transfer coefficients, so that 
the effects of injection may be observed. The 
results of the analysis were compared with 
exact solutions and showed very good agreement. 
However, for the case where neither the Mach 
number nor the pressure gradient was zero, 
exact solution was not available, and so the 
accuracy of the present method is not known. 

The present method of solution is immediately 
applicable to more complicated problems such 
as vectorial injection ; this may therefore serve 
as a possible extension. Also, the derived 
expressions for the heat transfer may be used 
in numerical procedures to provide relatively 
simple solutions to the transient heating of a 
high-speed vehicle. 

ANALYSIS 

The equations of flow for a binary boundary 
layer over a surface with non-zero pressure 
gradient are : 

g CPU> + g (P4 = 0 continuity equation (1) 

au au ap a au 
puz+ pvF&= -z+zj Q-j 

( 1 
momentum equation (2) 

aT aT au2 
pUcpFa;+ Pocx~F~~-k‘ 3 

( ) 

= $ kg + pD12(Cp1 - G2) g ‘2 
( ) 

+Ug energy equation (3) 

diffusion equation (4) 
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where ; Kt=l 
In terms of the transformed variables, we may 

i=l express 4 in a non-dimensional form, 

These equations have been derived by making $(& rl) = (2Pf(17) (12) 
use of the usual boundary-layer approximations. 
The diffusion equation was derived assuming and hence from equations (11) and (12) 
thermal and pressure diffusions to be negligible 
relative to mass diffusion. 

The boundary conditions on this set of 
equations are : 

; = f”(V) (13) 

Let us introduce the solutions of the energy 
y = 0, u = 0, T= T,, Kl = Kl, (5) equation and diffusion equation in similar forms: 

(6) 
H 

- = g(7) 
He 

(14) 

Y-+ a, u --f Ue, T-t Te, Kl +O. (7) and Kt = Kt(7) (15) 

Equation (6) states that the overall velocity at 
the surface is equal to the relative diffusion 
velocity. Equations (5) and (7) are the conven- 
tional conditions usually used in the integration 
of boundary-layer equations. The momentum 
and energy equations may be combined to 
yield a modified energy equation: 

+ay a [FpDia -$ k2] (8) 
i=l 

It is now desired to reduce equations (2), (8), (4) 
to total differential equations by assuming 
similar solutions. 

The transformation equations necessary are : 

Thus, by introduction of the variables TJ and 5, 
andf(& g(q), Ki(v) we may obtain the following 
forms of equations (2), (8) and (4): 

1 ’ 
6 

-~ ( 1 Pg’ +y$;;c(f,2),,, 
+[$1) -$%I! (17) 

i=l 

(18) 

PIJ where c = __ 
PeCLe 

is the density-viscosity ratio. 

II 

;;dy 

The transformed boundary conditions become : 

(9) 
0 ~=O,f’=O,g=$K~=Klw, 

e 

5~ 1 peuepedx (10) 
0 cw(K;)w 

.f= ~ 
(19 

We may define a function #(x, y) to be the S, K29.0 

solution of the continuity equation, and thus, q+ co,f’+ 1,g-t 1, Kl+O 

y _ a+ 
ay p" and -=-pv 

Since we have assumed similar solutions, it is 
ax (*'I necessary that all coefficients in equations (16) 
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and (17) should be independent of E. Thus, the 
term (dHJdS) in equation (17) must be taken 

25 dH, as zero, or the quantity --- - must be con- 
He df 

stant. However, if we assume constant total 
enthalpy in the external flow, then the first 
condition is satisfied. 

If we use the assumption that the pressure 
variation across the boundary layer is negligible, 
then we may obtain the density ratio: 

Fe de cpe 
_z 

P 
z e-2 

P [ 
Ye-- M,2(g-f’2) 

I 
(20) 

According to the simple kinetic theory, we have 

C,, = ji + 2 RU ~- 
2 AZ (21) 

where ji = the effective number of degrees of 
freedom of the i gas. It follows that 

Cp, de Cpede je + 2 
E =_ w CpFz- jM + 2 

c, dz 
- -- (22) 

where 

Thus c, as defined in equation (22), is a function 
of the mixture composition. For hydrogen-air 
mixtures we take E = 1. In the case of helium- 
air mixtures in which the helium concentration 
is small, we may take < = 1. 

Thus equation (16) may be written: 

(cf”)’ +ff” + $ d$ 

( 1+ q A4:) (g ---y) = 0. (23) 

Let 

(24) 

Thus, for p constant : 

Me = 142 (n8” (25) 

This relation gives the external Mach number 
distribution for similar solutions. 

Thus for non-vanishing Mach number in the 
external stream, the equations are : 

(cf")' + ff" + P(g - y) = 0 (26) 

These equations must be integrated with the 
boundary conditions as given in equation (19). 
Clearly, equation (27) cannot have similar 
solutions unless the term Ut/He is either zero 
or a constant, or if P = 1, 

In the case uz/He = 0, (or Me = 0) from equa- 
tion (24) we have : 

X due 
--zzz 

ue &f B (29) 

Thus, for @ constant 

24e = A3 (QJ” (30) 

which gives the external velocity distribution 
for similar solutions. 

The three equations to be solved, for Me = 0, 
are : 

W’Y +jY + B k -.Y) = 0 (31) 

i=l 

(33) 

METHOD OF SOLUTION 

The method of solution adopted is similar to 
that used by Li in [l]. The method is also based 
on an analysis of the laminar boundary-layer 
equations by Meksyn 121. 

It is necessary to solve the set of nonlinear 
differential equations (26), (27), (28) with the 
given boundary conditions. The solution is 
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based on the assumption that f”(7) being a Using the boundary condition f’(7) = 0 at 
rapidly varying function may be expressed in the 7 = 0 it follows that 
form : a1 = 0. 

f “(d = exp [-WI dd (34) Similarly, using eq.uation (19), 

where K;(o) cw 
a0 = -K2, 3; 

F(q) = 
1, f(T) 

f 
7 dq 

(35) Thus, let us take: 

0 

First, however, we must obtain f(q) expressed 
f(T) = $@E + $f”(O) ?ja - 

in the form of a power series in 77 which satisfies 
the boundary conditions. Clearly, this may be Let 
done by substitution of an assumed series for 
f(7) into equation (26). It can be seen that the 
function g(T) also appears in equation (26), and 
so to obtain a first approximation we assume 
Crocco’s integral to be valid, i.e. 

g(rl) = &J + f’(V) (1 - &) (36) 

Surely this expression is only valid for P = 1, 
L = 1 and j3 = 0. However, so long as g(r]) may 
be expressed in the polynomial form 

00 

s(d = gw + c - :F (37) 
?Z=l 

Then to the order of accuracy of the present 
theory, the solution is not affected by the 
substitution of Crocco’s integral. 

Having obtained a power series expansion 
of.f($, we now proceed to substitute this into 
equation (26) which may be regarded as a 
first-order linear non-homogeneous equation in 
f”(7). Thus, f”(q) can be obtained in the form 
of equation (34). 

Knowing f”(7) we may then integrate the 
expression and apply the boundary conditions 
at infinity to determine a single unknown 
coefficient. 

Solution of equation (26) 
Assume 

co 

f(T) = a$ c . 
n=0 

(38) 

+- 

(39) 

m 

c *$ (40) 

n=3 

K;(o) cw 
- -= - 

K2w SW 

B, 

and 

(41) 

Since we are mainly interested in quantities at 
the surface (7 = 0), it is permissible to take 
c = cw in equation (26). Thus, substituting 
equations (38) and (36) into equation (26), and 
equating the coefficients of r]n in the resulting 
equation to zero, we obtain: 

CU an+3 
--r + B(1 - gw) ‘$ + iPgw 

a, 

+ c an W-n+2 _-_ ~~- 

n! (N-n)! 
?&=O 

N 

%+I aN--n-t1 

-‘C (n+ l)!(N-n)!=O (42) 
?L=O 

where 

i=O for N#O 

i=l for N=O 

Thus, we may obtain any coefficient, an, in 
terms of ao and aa. However, aa remains un- 
determined even though al and ao are known. 
From the form of the equation, the reason for 
this is clear. 

Computations using equation (42) give the 
following results for the coefficients. 
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no = - B’, u2 -f”(o) = a, However, from equations (40) and (43) we have 

a~ --= - 1 (1 - g,) a + 
CU! 

B!!%Y-B: (43) 

Let us take 

V(T) = 
O3 b 12 

c 
-;; 

n -= 0 

Then 

I-%)=bo++o~+bi) 

Taking only the first two terms inf(v), we may Comparing equations (47) and (46) yields 

expand the exponential in equation (34) to give: 
ho 7 a, bl = _ ‘!@ 

C’lC 

b2=f$@.._@(l -gw) (48) 
ui 

. . (44) 
Thus, by equation (45) we have 

(45) - /3(1 ~ gu,) 6A ; + o($) 
I 

(49) 

where 

B _ B’ 
c/II 

(50) 

We now apply the boundary condition ,f ‘( a) -: 
1. Thus, taking only the first two terms in 

(46) .f(?7) , we obtain: 

m 

s exp (BT) exp (-Ad) a - !%!! 7 + B13gw 
c, 

-c; -/3(1 -gw)6A (51) 

0 

This equation may be integrated in the form of gamma functions to give: 

where 

Taking equation (52) for A, we have 

A = 1 + fi(l - gw> (1 + 0.894~) + 

B 

a=A=’ 
(53) 

{[l + fl (1 - gw) (1 + 0*894a)]a + 9.65/3gw (1 + 0.875~))~ ra ~_ _. ~____ ~_ 
4cuJ r(g) (1 + _051a) 

<54) 
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where we have taken terms to o(a) only, i.e. we have assumed a < 1. 
Returning to equation (49) it is clear that unless gW is small the series diverges rapidly except 

for a low range of values of 7. The quantity exp [-F(y)] ~(7) is of primary importance, and the value 
of its integral has been derived on the assumption that ~(7) is a slowly varying function in comparison 
with exp [--F(T)]. Thus, if v(q) becomes divergent for small values of 7, the value of the integral 
determined by taking only three terms in ~(7) will be considerably in error. The convergence of 
~(7) therefore has to be improved, and this is done by the use of Euler Transformations (see [3]). 
The series thus obtained was: 

~j(~) zzz a _ 0.563 !b rl + B& I 
2 

cw CW 
- PC1 - gw) 64 & + o(~~) (55) 

The expression for A thus modified becomes: 

A= 

i 

1 +(/3/16)(1-gW)(l+0*894a)+[{1+(jI/16)(1 -gW)(l+0*894a)}2+5*45~g~(l i- 1*13a)]* 3’2 

4cW (1 + 0*51a) l?(Q) ! 
(56) 

Solution of equation (28) 
Let us now return to equation (28) the diffusion equation. This equation may be integrated to 

give : 

k(d = K;(o) 1 ev i-f KS&J) f (7) +I > drl + KIW (57) 
0 0 

Again, we have taken the value of the flow parameters (P, c, S, etc.) to be that at the wall. 
On substitution of the first three terms off(T), equation (57) becomes: 

Kdd ~ = - BI ’ {exp WI) > lexp (- Am3)l 1-p Kh4)/241) drl + 2 
K2w s 

0 

where 

Thus, using the boundary conditions at infinity, we have 

m 

BI 
s 
@xp (Bd) {ew (6Aid)) {exp KDI~~)/W) dv = g< 

0 

(58) 

(59) 

The left-hand side may be evaluated using gamma functions as before. Thus to o(a) only, we obtain 
the following formula: 

Km w _- _- 
Kzw 3 

a si,3 1 / W) SW /%w A-4’3 
36l?(&) c; > 

(60) 

It can be seen from equation (60) that unless ,f3 and gW are very large, the terms involving /I are small 
and may be neglected. 
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SKIN FRICTION AND SURFACE MASS TRANSFER 

Now, from equations (41) and (56), 

Where 

6 h3’2@, u) 

f”@) = [4 r(;)]3/2 & (61) 

1 + @/16) (1 - gw) (1 + @8944 + W + C/3/16) (1 - gw) (1 + @894412 + 545&w (1 + 1.134)~ 

(1 + 0*51a) 

Also 

K2w So ahV, a) 

K&) = - -[4r($)]t cb 

Define the surface mass-transfer parameter as 

.fw = 
K;(o) cw 
~ = - ,,,cw _41/3 

K29.0 SW 

4 hY8, a) 

i.e.& = - [4r(*)111_” 

The skin-friction coefficient is defined by: 

Cf = Ipyuz 
where 

au 
Tw =pw - ( 1 ay w 

= y$fyo) 
Thus, we have 

For the case M, = 0, equation (67) becomes 

where 

and 

SURFACE HEAT TRANSFER 

The heat transfer across the wall is made up of three components: 

(a) Conduction heat 
(b) Diffusion heat 
(c) Radiation heat 

(62) 

(64) 

(65) 

(66) 

(67) 

(68) 
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The last of these three quantities will not be considered here. Therefore, considering only the 
first two, we may write the surface heat transfer as follows (see [3]): 

qw = - pf 
w [(Z). - -$ (2). + %$ (tyw] 

i=l 

(69) 

whence we obtain: 

PW I.LW ue He 

qw = - PW (2.$)& g’(o) + (70) 

which, for Me + 0, becomes 

qw = - 
cw ue He (m + I)* 

Pw (Rez)’ i 

Tw C,I 

g’(o) + Te C,z - K;(o) [& - (1 - $j]} (71) 

Thus, we may use equations (70) or (71) to determine the heat transfer to the surface. The quantities 
K;(o) and KI, have already been expressed as functions of the parameter a, and so it is now necessary 
to obtain a similar expression for g;(o). 

In order to do this, we refer back to the energy equation (27). This equation may be integrated 
to give: 

g(q) = 1 - 7 (Pw/cw) {exp I- [ V’wlcw)fdd > ( Ow 1 i (Pwlcw)fW > F* dv dq - 
‘) 0 

b 

I i (p&w> {exP [- l @‘&w>fdrll~ h] / [ $ (Pw/cw) {exp [-- 1 (Pw/cw)fdy]} d17]} x 
0 

1 - WWIHJ - 7 (Pw/c~) {exp I- s” (Pwlcw)fdd > i {exp [ s” (Pw/cw) f dvl > F* dv d7 (72) 
0 0 0 0 > 

where 

(hl H, h2) I&)] ’ - ge [$ (pw _ ~)f’f”] ’ (73) 

Hence, we obtain: 

g’(o) = 1 - (Hw/He) - ~U’W/~ {exp [- ] (Pw/cw)fdd) ] { exp [ ] (Pw/cw)fdT]} F* d7 d7 
0 0 0 0 

$ {ev I- 1 (PU)I~w~fdd > 6 (74) 

As has already been done in previous sections, the flow parameters c, L, P, etc., are taken to have 
their wall values. 

To evaluate g’(o) we must integrate the expression: 

J = 7 VWeu> {ev [ - 1 (Pw/cwWM~ j Gw [ 1 V’w/cw>fd~l> f’* dq dq 
0 0 

(75) 
0 0 

This integration is carried out in two parts, corresponding to the two terms in equation (73). 
By suitable approximation, we may obtain: 
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J= 2g (1 
e 

where 

ZI = 7 exp [-- F(T) Pwl drl 
0 

and 

Cc 
14 = _f exp [ - pw %I) 7 exp [pw &)I (d/W Lfk - Ya)I d? + 

0 0 

Thus, we may obtain from equations (74) and (76), 

Pw) (1 - pw c4 +f”(O)f(O)lI + (1 - -ho) (h - Ww 
K;(o) 11 

j-y 
e 

+~~~(l-Pw)~~f(o)h-~~~-(l-PPu)~~~ 
e 

(76) 

(77) 

(78) 

g’(0) = 1,’ 
K;(o) II 

1 - $ - 2+ (1 - Pw) {1 - Pw[& +f”(O)f(o)l) - (1 - Lw) (h - Mw -u, 
e e 

- & (1 - Pw) (k f(0) I1 - gJ)) (79) 
e 

It may be noted that the pressure gradient parameter, ,B, assumes its maximum value in the stagnation 
region where ue --f 0. In general, therefore, we will have two regions of flow, one in which the pressure 
gradient is large and Mach number small, and one in which the pressure gradient is small and 
Mach number large. In these regions the error caused by the neglect of the terms containing 
/3(ui/He) should be minimized. There may be, however, a third region between these two in which 
both pressure gradient and Mach number are fairly large, and therefore these terms must be 
considered. 

It now remains to evaluate the integral 11. 
Taking only the first three terms in.f(T), we obtain: 

It is clear that the second group of terms only becomes of significant value when both the pressure 
gradient and injection rate are large. The magnitude of this term is also dependent upon the value 
of gW, which becomes large when the injected gas has a high specific heat. Therefore, from equations 
(70), (79) and (80), it is possible to calculate the heat transfer at the plate surface. 

STANTON NUMBER 

It is usual to incorporate the heat-transfer rate into a non-dimensional coefficient termed the 
Stanton number, which is defined as follows: 

cH = ,,e ue He [(Hw - Hw~~)lHel 
031) 

If we now consider the case when the heat-transfer rate is zero, i.e. adiabatic wall conditions, then 
from equations (70) and (74) we obtain: 

H 
l-F-J+ 

e 
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Assuming that 

But 

[Z&)]AD ZIAD = K;(o) Zl 

HW Tw [SW (CpdG2) + K2wl 

He = T, (1 + Kre - 1)/21 M,“I 

and 

H WAD TwAD [KIT (h/&z) + K2w] -~ ~__ 

~ = x- (1 + [(ye - 1)/2]Mi} He 

(83) 

(84) 

From equations (82) and (84), we have 

&to (C&,2) + K2w /& K;(o) 11 (CpdG2) 

1 + [(ye - 1)/21 hf,” + TOAD JwAD - 1 + [(ye - 1)/21 M,” 
La - 

K2w 
- [1 - G2/c,,)l) = CD 

where 

J wAD = 2s (1 -Pw)[l -Pw(=& +f"(~)f(~))lw~~ + 7 - 
TOAD [(&1&12) - ll(1 - Lw)K;(o)& 

e [I + (Ye - I)/2 %I 

If we assume that P~AD = Pw, LOAD = Lw, KI~AD = Kl,, then, from equation (85) we obtain: 

T WAD 
__ = 

TL? 

V - (WHe> (1 - Pw> [1 - Pw (4 +.f%)f@))lI U + be - 1)/Z M:} 

K1w (C&,2) + K2w + K;k9h NWG2) - 1lU -Lo) - (WCp2)Uw/K2w) - 1 + (C,z/C,~)]j 

(87) 

Thus, combining these results with equation (70) yields: 

pwpwue He 7-e Tw ___- 
qw = - ?w(2S)f Z1 ’ - TOAD Te -1 [ 1 - 2+ (1 - Pw)U - Pw [!I +f”(o) t@,l~] (88) 

here we have assumed that [~“(o)]AD = [f”(o)]. 
Hence, we have from equation (81), 

cH = CwPe (Te/TwAD) [I - (u2,PHe)U - Pw) (1 - Pw (4 +f”(o)f(o)})] ____ 
Pw(X~ t h K1w(G4',2) + K2w 

(89) 

Alternatively, from equations (82) and (76) 

1 - j$; (1 - Pw) { 1 - Pw [$ + f”(o) f(o)]} = HF + (’ - ZW)($ - h2)w K&,) Zl 

hwAD 
- 7 K;(o) Zl - 1 + * 

e G1 I 

t Hereinafter, we shall omit the last term in the J expression in equation (76). 
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qw = - 
Cw pe pe ue He 

Pw(2W 11 

where 
, 

G = 1 - (Lw - 1) (hl - h&#AD + - 
hwAD K;(O) 11 Lw 

e He K2w [- 

From equations (81) and (91), we have 

cH=p$g 
w 

From equations (67) and (93), 

CH 2pzt3 - = - 
GA-Z’3 

w G 2c, 5 (u”/n!) PE’S r&z + 1)/31 
1z=O 

(91) 

1+% 
I 

(92) 
Pi 

(93) 

(94) 

where we have neglected the second group of terms in the Zi expresion given by equation (80). 
Clearly, for p = CL = 0 this reduces to the modified Reynolds analogy. However, for any values of 
a and /3 other than zero, the right-hand side of equation (94) is not necessarily unity. 

CONDUCTIVE HEAT TRANSFER 

In certain cases it is of interest to consider only the conductive component of heat transfer. In 
this case, the heat transfer and Stanton number are defined as follows : 

pw pw ue He Tw Cpl K;(o) [(C,2/C,1) - 11 
qwc = - 

Pum-)~ g’(0) + EC,2 (1 + [(ye - 1)/2] M,2} 

9wc 

cHc = pe ue He [(Tw/Te) - (TwADc/Te)I 

(95) 

(96) 

where (wake) refers to conditions at the wall for zero conductive heat transfer. 
Therefore, using equation (79) which applies whether we consider qw or qwc, we find from equation 

(95) 

T w~Dc _ El - (~:Pffe) (1 - pw) (1 - Pw {S +f”(~)f(~)Hl{l + [(Ye - 1)/A W> 
Te 6, (Cp1lCp2) + K2w + (2 - Lo) [(WG2) - 11 K;(o) 11 

Also, from physical considerations, for Me -+ 0, 

(97) 

First-order solutions for Me -+ 0 
It is of interest to compare the value of the skin friction for a given blowing rate to the value for 

zero mass transfer. If we let Cfo be the value of the skin friction at zero mass transfer, then to 
o(a) only, 
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Cf -= - 
Cfo ( 1 c;. * (1 + 051u)-s’s 

1 + (/l/16)(1 - g,)(l + 0894a)+[{l +@/16)(1 -&)(I +0.894a)]2+ 5*45/%m(l -t 1*13# 3’2 

1 + (b/16) (1 - gu)o) + [{l + (/‘J/16) (1 - gw,)Y + 5*45&$ > 

where g,, = (Tu/Te), and we have assumed Pw = Pwo 
In this formula we may use the following approximate relation: 

$!& = s2 = [1+4.(2 - 1)]-h (100) 

where Ai and As are the molecular weights of the two gases. The value of IL is given by equa- 
tion (60). 

Similarly, taking terms to O(CL) only, and assuming Pw = Pwo, 

4 (1 + 0.51 a)-’ ____ 
(1 + 0.51 P$” a) 

1 + (p/16)(1 -gw)(l +0*890)+[{1 4 (P/16)(1 -gw)(l + 0*89a)}2 i- 5.45&w(l + l*13a)la t 

1 + (P/16)(1 - gw,) + [U + (8/WU - gw,)12 + 5*4%kw,l* 1 

(101) 

where we have neglected the second term in equation (80). 

First-order solutions for finite Mc 
It may be seen from equations (26) and (27) that unless the two quantities B[l + {(ye - 1)/2}M,2] 

and (u,2/He) are both constant, conditions of similarity are violated. 
The first order expression for the skin-friction coefficient ratio is given by exchanging /3 for b in 

equation (99). 
We also obtain: 

CHC 
r = i 
LHCO 1 

KI, % + K2w + (2 -Lw) (2 - 1) K;(o)h} (z)M.=O 
%2 

(102) 

DISCUSSION AND COMPARISON OF 

RESULTS 

The expressions for the skin friction and heat- 
transfer coefficient ratios [(C,jCfo), (CH~/CH~~)] 
in equations (99) and (101) were plotted for 
various flow conditions and various injected 
gases. The first case to be considered was that 
of air injection under stagnation and flat plate 
conditions, where the external flow Mach 
number was assumed to be negligible. The 
present results were compared with the nu- 
merical data prepared by Baron [4] where a 
temperature ratio (Tw/Te) was taken to be 0.8. 
It can be seen from Figs. l(a), l(b) that for 
fl = 0 and fl = 1 the results are in very close 

H. & M.4E 

agreement throughout the range of 0 <fw < 0.5. 
Outside this range of injection the parameter 
a becomes greater than unity, however the 
present solution still appears to be fairly 
accurate. 

This first example indicates that the form of 
the solution is correct as far as the parameter 
a is concerned. The effect of the temperature 
ratio, (Tw/Te), is of interest, and Fig. 2 has 
been prepared to accentuate this parameter. 
It can be seen that for 0 < (Tw/Te) -=c 1 the com- 
parison with results from the numerical solution 
presented by Reshotko and Cohen [5] is very 
good; indicating that the form of the solution 
is also reasonable with respect to this variable. 
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FIG. l(a). Effect of air injection on skin-friction coefficient 
(Me = 0, Tw/Te = 0.8). 
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A Exact solution [4] 
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FIG. l(b). Effect of air injection on heat-transfer coefficient 
(Me = 0, Tw/Te = 0.8). 

The third parameter which has a major 
effect on the solution for the case of air injec- 
tion is the pressure gradient parameter, /L The 
previous analyses indicate that the role of this 
factor is correctly represented, but in order to 
fully investigate this point, the variation of 
f”(o) with /3 for (T’/Te) = 1 was plotted on 
Fig. 3. These results are compared with nu- 
merical data from a report by Hat-tree [6], who 
carried out an analysis of a single component 

A Exact solution [s] 

0 Present analysis 

00 
0 0-I 0.2 0.3 0.4 05 

FIG. 2. Effect of Tw/Te on heat-transfer coefficient 
(Me = 0, air injection). 

isothermal boundary layer. These results in- 
dicate that the effect of the pressure gradient 
is slightly underestimated with respect to the 
velocity gradient at the wall. The maximum 
error is about 8 per cent. It is clear, therefore, 
that while the combined effect of /I and a appears 
to give accurate results, the individual effect 
of each is a little in error. The troublesome 
term in equation (56) is A&l + Baa) where in 
the present analysis A4 = 5.45 and B4 = 1.13. 
It would seem that the value of A4 is under- 
estimated, while that of B4 is overestimated. 

I.2 - 

I.0 - 

A Exact solution [67 
0 Present analysis 

0 0.2 0.4 0.6 0.8 I.0 

B 

FIG. 3. Variation of F’(o) with fi (no injection). 
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However, under consideration of the rather results were plotted in Figs. 5(a) and 5(b) for 
large increase in f”(o), the solution from this three values of the pressure gradient, while the 
viewpoint appears to be satisfactory. temperature ratio was maintained at 0.8. The 

The results so far have demonstrated fairly heat-transfer coefficient was calculated with 
convincingly the validity of the present solution 
when Me approaches zero, it remains to in- 
vestigate the effect of the Mach number on the 

I.0 

solution. The results as predicted by equations 
(99) and (102) are shown in Fig. 4 in which we 0.8 

0 Present onalvsis 

-Heat transfer 
---Skin friction 

pu VW 

0.2 - 
--6 
P* u. 

FIG. S(a) Effect of helium injection on skin-friction 
coefficient (Me = 0, Tu/Te = 0.8). 

0 1 I I I I I 

0 0.1 0.2 0.3 0.4 0.5 
I.0 

A Exact solution [4] 

FIG. 4. Effect of Mach number on skin-friction and heat- 
transfer coefficients (/3 = 0, Tw/Tc = 0.8, helium 

injection). 

compare the present results with those from [7]. 2Jc$ 

It may be seen that while the Mach number does 
appear to affect the solution, the variation over 

0.4 

the Mach number range considered is small. 
It may be concluded that the predicted trend 0.2 

is acceptable for the case /3 = 0. The only 
remaining situation to be investigated for air 
injection is the combined effect of pressure 0 I I I I I I 

gradient and Mach number, but since there 
0 0.1 0.2 0.3 0.4 0.5 

appears to be no available exact data, this 
comparison cannot be made at the present time. FIG. S(b). Effect of helium injection on heat-transfer 

In the preceding sections the effect of air coefficient (Me = 0, Tw/Te = 0.8). 

injection on the tlow parameters has been 
investigated. However, it is of great importance the inclusion and omission of the second term 
to know the effect of injecting a foreign gas, in equation (80). It may be seen that the results 
since numerical solutions have shown this to for p = 0 are very good, but for @ = 1, it is 
be of particular interest. Two gases were chosen necessary to include the second term to obtain 
for which exact data was available, these were good accuracy. This necessity arises due to the 
helium and hydrogen. For the former case the increasing magnitude of g,,, as the specific heat 

A Exact solution [4] 
0 Present analysis 

0.8 

0.6 

Present analysis 
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ratio, Cpl/Cps, becomes large. However, taking 
this more exact form, the predicted reduction 
in the heat-transfer coefficient appears to be 
quite accurate for all three values of the pres- 
sure gradient. Figure 5(a) shows the variation 
of the skin-friction coefficient. It can be seen 
that while the values for p = 0 are very accurate, 
for ,8 = 1 there is a discrepancy. In equation 
(lOl), we have the product of two functions, one 
which becomes very small for high a, and 
one which becomes very large for high a. Con- 
sequently, any inaccuracy in the method be- 
comes magnified due to this combination. 

A similar analysis was carried out for the 
case of hydrogen as the injected gas. The 
comments on this comparison are very similar 
to those for helium. It may be seen [Figs. 6(a) 
and 6(b)] that the same trends are exhibited 

@=I 

01 , 
I I I I 1 

0 0.1 0.2 0.3 0.4 05 

FIG. 6(a). Effect of hydrogen injection on skin-friction 
coefficient (Me = 0, T,/T, = 1.0). 

but in a more accentuated manner. It is neces- 
sary to use the complete expression for 11, in 
the evaluation of the heat-transfer coefficient, 
and also the over estimation of the skin friction 
is present. Probably the large magnitude of 
the molecular weight ratio (AZ/&~) gives rise 
to the discrepancies. Figure 7 shows the effect 
of Mach number on the skin friction and heat- 
transfer coefficients. The comparison here is 
made with numerical data from [7]. 

A Enact solution (8) 
0 Present onolysis 

8= I 

0 I I I I I I 
0 0.1 0.2 0.3 0.4 0.5 

SK 

FIG. 6(b). Effect of hydrogen injection on heat-transfer 
coefficient (MI = 0, T,/T, = 1.0). 

Figures 8 and 9 show the variation of wall 
mass friction with injection rate for both 
helium and hydrogen. While the values for 
zero pressure gradient are fairly close, there is a 
definite discrepancy for large values of /3. It 
would appear that the present method under- 
estimates the value of the wall mass fraction 
for high /3. 

This data for helium and hydrogen would 
suggest that the effect of foreign gas injection 
is reasonably accurately predicted, even for 
large molecular weight ratios, except in the 
prediction of the wall mass fraction for high a 

and high fi. 

CONCLUSIONS 

The results would suggest that the approxi- 
mate solutions are reasonably accurate over a 
wide range of flow conditions. There are several 
points of interest which emerge from the 
analysis, some of which have been shown by 
numerical analyses. 

The results show quite clearly the large 
reduction of heat transfer which may be obtained 
as a result of injection at a relatively modest 
rate. Further, the very great improvement in 
the efficiency of the process by using a light 
injectant gas is also shown. However, there is 
seen to be a marked effect of the pressure 
gradient on this heat-transfer reduction process. 
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0 Present analysis 
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0 005 0.1 0.15 0.2 0.25 

FIG. 7. Effect of Mach number on skin-friction and heat- 
transfer coefficients (hydrogen injection). 

FIG. 8. Effect of injection on wall mass fraction (kf, = 
0, T,/Te = 0.8, helium injection). 

The introduction of a large pressure gradient, 
such as would occur in the stagnation region 
of a body, greatly offsets the advantages of 
injection and returns the heat-transfer co- 
efficient near to its solid wall value. Conse- 
quently, one would assume that heat protection 
by injection in the stagnation region would be 
of greatly reduced effect. However, this is not 
quite true if we take into consideration a 

FIG. 9. Effect of injection on wall mass fraction (Mc = 
0, Tw/Te = 1.0, hydrogen injection). 

further parameter, the wall temperature ratio, 
Tw/Te. It is seen that as this quantity decreases, 
the adverse action of the pressure gradient 
decreases also. Thus, provided the wall tempera- 
ture is maintained considerably lower than that 
of the external flow, the advantages of injection 
are utilized to their fullest extent. 

This approximate method of solution has 
great applicability in producing optimum in- 
jection conditions when we are concerned with 
non-equilibrium flight conditions. Let us, for 
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example, consider a body entering the atmos- 
phere, and being subjected to deceleration over 
a time T. Let us assume that we wish to minimize 
the total heat transfer to the body over the 
flight time by the use of injection. It is apparent 
from the conclusions drawn earlier that the 
injection is more effective when the wall tempera- 
ture ratio is lower. Consequently, it is unlikely 
that for a given amount of fluid available for 
injection purposes, the total heat flux will be a 
minimum if we eject this at a constant rate 
throughout the given time period. The quantity 
we wish to minimize is J”rqw dt for a given 
value of JFfW dt. This may be solved fairly 
easily by a numerical analysis of the various 
possibilities. 

Perhaps one surprising fact which emerges 
from the results, and has also been shown by 
numerical procedures, is that the skin friction 
may be increased by the injection of a very light 
gas, such as hydrogen, while in the presence of 
a high pressure gradient. This is due to the 
relative effect of the decrease in viscosity and 
increase in velocity gradient at or near the 
surface, the latter occurring due to the greater 
acceleration of the low density gas in the high 
pressure gradient regions. 

In conclusion, one may say that the approxi- 
mate solutions appear to be reliable under most 
conditions which may be encountered in 
practice. The use of these formulae should be of 
great use in either solving simple problems 
quickly, or for analyzing more complex flight 

conditions where numerical procedures would 
be extremely unwieldly. Possible extensions of 
this work may be in the consideration of more 
complicated boundary layer conditions such as 
vectorial injection, or the inclusion of phenomena 
such as dissociation. 
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R6sum&-Cet article prbente une analyse approchee des equations de la couche limite binaire lorsque 
le gradient de pression dans l’ecoulement exterieur est different de zero et lorsque le nombre de Mach 
de l’ecoulement n’est pas necessairement faible. Des expressions pour les coefficients de frottement 
et de transport de chaleur sont obtenus en m&me temps que des formules montrant explicitement 
les effets de l’injection. Les resultats sont compares avec les solutions numeriques exactes dans une 
large gamme de conditions d’ecoulement, et l’accord est tres Btroit. 

Zusannnenfassung-Diese Arbeit bringt eine Naherungsanalyse der Zweistoff-Grenzschichtgleichungen 
ftir Bedingungen, bei welchen der Druckgradient des Lusseren Stromungsfeldes nicht Null und die 
Machzahl der Stromung nicht notwendig klein ist. Zusammen mit Formeln, welche die deutlichen 
Eintliisse der Querstromung aufzeigen, werden Ausdriicke fiir den Oberflachenreibungsbeiwert und 
die Warmetibergangszahl abgeleitet. Die Ergebnisse werden mit genauen numerischen Losungen 
fiir einen weiten Bereich von Stromungszustanden verglichen; die Ubereinstimmung ist sehr gut. 

AnoTaqm-B AaHHOi CTaTbe IlpeACTaBJIeH IIpPl6JlHxteHHblti 3HaJlE13 YpElBHeHHi 6MHapHOrO 
C;IOR B YCnOBHRX, HOri[a rpEiAEleHT AaBJleHtIR IIOJIR BO BHeIIIHeM IlOTOKf? Ht? PaBeH HY.TH), a 

'ILICJIO Maxa AJIR IIOTOKa HeO6fI33TeJIbHO MaJIO. YpaBHeHHFI AJIH H03++WIeHTOB TpeHLIfI If 

TeIIJIOO6MeHa BbIBeAeHbI COBMWTHO C $lOpMyJIaMI$ OTpaEWOII@MM BJIHRHIle BfiyBa. Pe3yJTb- 

TaTbI CpaBHeHbI C TOWIbIMH YMCJICHHbIMIl pCmeHEIHMPI AJIfi mlipOKOr0 mIana3OHa yCxOButi 

norona. 0~51 xopomo cornacyrorcs. 


